S-nitrosoglutathione induces ciliary neurotrophic factor expression in astrocytes, which has implications to protect the central nervous system under pathological conditions.
نویسندگان
چکیده
Accumulating evidence suggests that reactive astrogliosis has beneficial and detrimental outcomes in various CNS disorders, but the mechanism behind this dichotomy is unclear. Recent advances in this direction suggested that NO signaling is critical to regulate the outcomes of reactive astrogliosis in vivo. Using biochemical and genetic approaches, we here investigated the effect of S-nitrosoglutathione (GSNO; a physiological NO donor) in astrocytes in vitro settings. GSNO enhanced the expressions of glial fibrillary acidic protein and neurotrophic factors including ciliary neurotrophic factor (CNTF) in astrocytes in a dose-dependent manner. The enhanced CNTF expression in GSNO-treated astrocytes was ascribed to NO-mediated sGC/cGMP/PKG signaling. It was associated with p38 MAPK-dependent increased peroxisome proliferator-activated receptor-γ transactivation. In addition, the chromatin accessibility of peroxisome proliferator-activated receptor-γ accompanied with ATF2 and CREB (cAMP-response element-binding protein) was enhanced across the CNTF gene promoter in GSNO treated astrocytes. Interestingly, secreted CNTF was responsible for increased expression of glial fibrillary acidic protein in GSNO-treated astrocytes in an autocrine manner via a JAK2- and STAT3-dependent mechanism. In addition, CNTF secreted by GSNO-treated astrocytes enhanced the differentiation of immature oligodendrocytes in vitro. These effects of GSNO were consistent with an endogenously produced NO in astrocytes stimulated with proinflammatory cytokines in vitro. We conclude that NO signaling induces CNTF expression in astrocytes that favors the beneficial outcomes of reactive astrogliosis in vivo. Our data suggest that the endogenously produced NO or its exogenous source has potential to modulate the outcomes of reactive astrogliosis to protect CNS under pathological conditions.
منابع مشابه
Type-2 astrocyte development in rat brain cultures is initiated by a CNTF-like protein produced by type-1 astrocytes.
O-2A progenitor cells are bipotential glial precursors that give rise to both oligodendrocytes and type-2 astrocytes on a precise schedule in the rat CNS. Studies in culture suggest that oligodendrocyte differentiation occurs constitutively, while type-2 astrocyte differentiation requires an exogenous inducer such as fetal calf serum. Here we describe a rat brain cell culture system in which ty...
متن کاملA role for ciliary neurotrophic factor as an inducer of reactive gliosis, the glial response to central nervous system injury.
Within the central nervous system (CNS) ciliary neurotrophic factor (CNTF) is expressed by astrocytes where it remains stored as an intracellular protein; its release and function as an extracellular ligand are thought to occur in the event of cellular injury. We find that overexpression of CNTF in transgenic mice recapitulates the glial response to CNS lesion, as does its injection into the un...
متن کاملThe trophic effect of ciliary neurotrophic factor on injured masseter muscle in rat
Objective(s): Occlusal trauma is one of the most common forms of oral biting dysfunction. Long-term occlusal trauma could weaken the stomatognathic system; especially damage one’s masticatory muscle. Through using the rat model, this study investigated the trophic effect of ciliary neurotrophic factor (CNTF) on injured masseter muscle. Materials and Methods: Male Wistar rats (n=36) were random...
متن کاملP167: Key Role of Inflammation in Central Nervous System Damage and Disease; TNFα, IL-1
Inflammation is portion of the body's immune response and it is basically a host protective response to tissue ischemia, injury, autoimmune responses or infectious agents. Although the information presented so far points to a detrimental role for inflammation in central nervous system (CNS) disease, it may also be useful. CNS demonstrates characteristic of inflammation, and in response to damag...
متن کاملDetection of Interleukin-19 mRNA in C57BL/6 Mice Astroglial Cells and Brain Cortex
Introduction: Astrocytes are the most abundant glial cell type. In addition to their neurological roles, astrocytes also have immune functions. They have been involved in antigen presentation in the central nervous system (CNS). Activated astrocytes express adhesion molecules, chemokines and release several inflammatory mediators, pro-inflammatory cytokines, neurotrophic and neuroprotective fac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 288 6 شماره
صفحات -
تاریخ انتشار 2013